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Dialect levelling
• “the eradication of socially or locally marked variants […] in conditions of social 

or geographical mobility and resultant dialect contact” (Milroy 2002: 7) 

• Multiple sources of evidence: 

- Reduction of local forms in studies of specific dialects, e.g. the FACE and GOAT 
vowels in Tyneside English (Watt 2002) 

- Loss of regional diversity in more spatially-widespread dialectological studies 
(e.g. Britain, Blaxter and Leemann 2021; MacKenzie, Bailey and Turton 2022)  

- Perceptual evidence from dialect recognition tasks (e.g. Kerswill & Williams 2002) 

- ‘Machine learning’ dialect classification (e.g. Strycharczuk et al. 2020)



Random forests and General Northern English (GNE)      
(Strycharczuk et al. 2020)

• Used by Strycharczuk et al. (2020) in a novel computational approach to 
identifying dialect levelling in the North of England 

- use statistical models to quantify the level of mutual confusability between 
the dialects of Manchester, Liverpool, Leeds, Sheffield and Newcastle 

- if the models struggle to accurately classify speakers into their respective 
dialect groups → dialect levelling has taken place

Random forests: machine-learning classification technique to 
generate predictions based on the output of multiple decision trees



Random forests and General Northern English (GNE)      
(Strycharczuk et al. 2020)

• They train models based on vowel systems: F1 and F2 measurements 
for 23 vowel categories in English 

• Recordings taken from the English Dialects App corpus: read passage 
from 105 speakers 

- “a typical speaker in our sample is an urban white woman in her 30s 
with a university degree”

! → "



Random forests and General Northern English (GNE)      
(Strycharczuk et al. 2020)

• Results reveal higher confusability rates between Manchester~Leeds, 
and between Leeds~Sheffield → dialect levelling to a General Northern 
English 

- “a pan-regional standard accent associated with middle-class 
speakers” 

- speakers who demonstrate broadly northern features (e.g. absence of 
FOOT–STRUT split and BATH–TRAP split) but lacking more locally-specific 
features



…modelling older and younger 
speakers separately to investigate 

levelling diachronically.  
Are younger speakers more 

difficult to classify?

#$%&

This study
Adopting the same computational approach using random forests, but…

…modelling dialects more 
holistically using survey data 

covering phonological, lexical, 
and morphosyntactic features



Methodology



Data: Sample
• Our Dialects survey: over 20,000 responses geolocated by 

the postcode district they lived longest between ages 4–13 
(see MacKenzie et al. 2022) 

• ~4,000 speakers from the 5 northern cities of interest:

LS

(N = 470)

Leeds

L

(N = 441)

Liverpool

M

(N = 1065)

Manchester

NE

(N = 1352)

Newcastle

S

(N = 616)

Sheffield

- ‘Younger’ group (N=2499):   born 1981–2010, mean = 1995 

- ‘Older’ group (N=1445):  born 1924–1980, mean = 1961

www.ourdialects.uk
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LS
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Yorkshire and 
The Humber

North 
West

Data: Mobility
• Respondents were also asked for a full list of 

everywhere they lived during childhood and early 
adolescence 

• Most were non-mobile (93.4%), but there are 
enough responses from mobile individuals to 
consider this as a factor in the analysis: 

- 78 moved between postcode districts  
           (within the same postcode area) 

- 49 moved between postcode areas  
           (within the same region) 

- 96 moved between regions  
           (within England)



Data: Survey questions
The survey includes 35 questions covering three types of dialect features:

lexical e.g. what word do you use to refer to the 
evening meal?

e.g. do the words thin and fin  
sound the same or different to you?

phonological
e.g. do the words book and spook  

rhyme for you?

morphosyntactice.g. could you use the phrase  
‘we was watching a film’?



Analysis

• Turn the dependent variable into a binary (location vs not location) and fit 
separate random forest models to predict membership of each location

Leeds not Leeds Manchester not Manchester

LD
S

LI
V

M
CR

N
CL SH

F



Analysis

testing data 

those models are then 
tested on unseen data

training data 

used to train  
classification models



Analysis

training data

test data

I adopt a 30:70 split, setting aside 
~1200 speakers each time for 
testing, and training models on 
the remaining ~2800 speakers



Analysis

• Fit a random forest that learns 
from this training data 

• Each forest contains 500 
classification trees
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Analysis
• Each tree in a random forest 

generates a prediction 

• The random forest settles upon one 
single outcome based on the 
majority ‘vote’ 

• Here: I also analyse tree ‘agreement’ 
as a gradient measure of confidence

(56% agreement)

yes, from Liverpool



Analysis

• This entire process is repeated with: 

- different random samples of 
predictors (dialect features) 

- different random samples of the 
speaker population for the 
training/testing allocation 

• This is called bootstrap 
aggregation (bagging)

5x

500x

2500 classification trees per city



• Then that entire process is repeated, but on: 
- only younger speakers 
- only older speakers

Analysis

• Resulting in 3 sets of 5 
random forests: 

- the ‘overall’ set (for a general 
analysis like Strycharczuk et al) 

- the ‘young’ + ‘old’ sets (to 
investigate apparent-time change)



Results
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Newcastle model is 
most accurate (93%), 

followed by Liverpool 
and Manchester (87%) 

Sheffield (85%) and 
Leeds (84%) are least 

accurate 

But very high rates 
across the board!

Accuracy by city(accuracy from 
Strycharczuk et al. 2020)
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Sheffield speakers 
incorrectly classified 
as being from Leeds 

Leeds speakers 
incorrectly classified 

as being from 
Sheffield

Most errors:

Accuracy by speaker dialect 
(split by model)
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The same also applies 
to Manchester and 

Liverpool 

i.e. Liverpudlians 
getting mistaken as 
Mancunian and (to a 

lesser extent) vice 
versa

Most errors:

Accuracy by speaker dialect 
(split by model)



Branching out #1
Phonological-only forests

These random forests were 
trained on a combination of 
lexical, phonological, and 

grammatical dialect features 

What if we train models only on 
phonological features (more 

closely mirroring the models of 
Strycharczuk et al. 2020)?
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Overall, accuracy rates don’t 
change that much 

Biggest drops are for 
Manchester (87% → 73%) 
and Sheffield (85% → 74%)

Combined models vs  
phonological models

LDS LIV MCR NCL SHF
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Accuracy by city/speaker 
phon. features only

Different 
confusability 

patterns emerge 

Manchester and 
Sheffield are mutually 

confused 

Leeds speakers 
frequently classified as 

Mancunian



Branching out #2
Apparent-time analysis

These models have all been 
randomly sampling from the 

whole population of 
respondents 

What happens if we train 
(and test) models specifically 
on younger vs older speakers? 

Hypothesis:  
Younger speakers are more 
difficult to classify, due to 

levelling
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The classification accuracy 
does not significantly differ 

between the age groups, 
with one exception… 

The Liverpool model is 
actually significantly better 

at classifying younger 
speakers!

Accuracy by city and age group
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p = 0.08 p = 0.34
p = 0.51

p = 0.16

p < 0.001



The models may be (somewhat) equally 
accurate in their overall classifications… 

…but is there lower consensus (i.e. fewer 
correct classifications from the individual trees 

of a forest) for younger speakers? 

Also no.

Confidence by age group
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Conditional variable importance

• Conditional variable importance (Strobl et al. 2008) measures the relative 
influence of each dialect feature in a random forest 

- i.e. how useful the presence (or absence) of a particular feature is in 
classifying a speaker as being from that location (or not) 

• Do these show any differences in apparent time?
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much lower importance 
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merger have also weakened
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NURSE–SQUARE merger has become 
increasingly important in classifying 

Liverpool English



NEW
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one–gone distinction is fairly stable → 
now by far the most important feature 
for classifying young Leeds speakers

long [uː] in book is less useful for 
classifying young speakers (levelling!)  

FORCE–CURE distinction has become 
increasingly important at its expense



Childhood mobility

• General tendency for classification 
accuracy to decrease as extent of 
mobility increases 

• Biggest decrease is for Liverpool 
speakers when mobility is between 
regions 

• Surprisingly, non-mobile speakers 
generally harder to classify than those 
who moved within the limits of a 
postcode area
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Discussion



Discussion
Overall results

• Overall, classification accuracy is much higher than that reported by Strycharczuk 
et al. (2020) 

- clean, binary self-report data vs messy acoustic formant data? 

- considering different dimensions of dialectal variability (i.e. lexical, 
morphosyntactic and consonantal features, not just vowels)? 

- speakers shifting away from their regional accents due to formality of read 
passage in the data they use? 

• Despite higher overall accuracy, the results are similar in terms of the hierarchy 
of dialects and the specific confusability patterns



Discussion
Dialect levelling

• Strycharczuk et al. (2020) conclude that the lower classification success for 
certain dialects suggests levelling has taken place 

• But this presupposes that the random forest models would, at some 
earlier point in time, have had higher classification accuracy 

• This isn’t supported by the apparent-time analysis here: 

- no consistent increase in accuracy for models trained (and tested) 
exclusively on older speakers



Discussion
Does this mean dialect levelling hasn’t taken place?

• Possible explanations: 

- Looking at too narrow a time window: the results here don’t mean that levelling didn’t 
take place, but rather that it likely slowed down around the 1950s/60s onwards 

- Survey data: great for tracing systematic phonological changes (i.e. mergers and splits), 
not so great for levelling that manifests in smaller-scale, gradient phonetic shifts 

• Variable importance scores indicate that some features are becoming less useful in dialect 
classification (i.e. because of levelling), but not to the point where speakers are becoming 
indistinguishable 

• Geographically mobile speakers are more difficult to classify, and mobility→levelling

no!



“It’s grim up north”

Thanks! Any questions?


