[]]tranger things have happened

Stephen Nichols - George Bailey University of Manchester - University of York

Glasgow University Laboratory of Phonetics - Lab Lunch 6 June 2019 anchester Engus, Stephen Nichols - George Bailey University of Manchester - University of York

Glasgow University Laboratory of Phonetics - Lab Lunch 6 June 2019

A process which turns **/s/** into a more **[ʃ]**-like sound

"Retraction" of the place of articulation from alveolar to post-alveolar

/stJ/ e.g. strewn

/stj/ e.g. student

Altendorf (2003):

• Estuary English

Bass (2009): • Colchester

Sollgan (2013): • Edinburgh

PHONETIC REALISATION

- Quite often the focus has been on the sociolinguistic profile of this change
- Relatively less work on the phonetic realisation
 - Some studies have adopted a binary classification (Janda & Joseph 2003, Bass 2009)
 - Rutter (2011) reports that a majority of retracted forms fall within a speaker's normal range for **[ʃ]**, with only limited evidence of intermediate forms
 - But Labov (2001) argues that there are 4 variants differing in how [ʃ]-like they are

PHONETIC REALISATION

- Quite often the focus has been on the sociolinguistic profile of this change
- Relatively less work on the phonetic realisation
 - Some studies have adopted a binary classification (Janda & Joseph 2003, Bass 2009)
 - Rutter (2011) reports that a majority of retracted forms fall within a speaker's normal range for **[__]**, with only limited evidence of intermediate forms
 - But Labov (2001) argues that there are 4 variants differing in how [**f**]-like they are

ARTICULATORY MECHANISMS

Characterised as **retraction**, based primarily on acoustic data

 Notable exceptions are ultrasound studies by Mielke et al. (2010) and Baker et al. (2011)

However, acoustics doesn't always have a one-to-one mapping with articulation

See e.g. Mielke et al. 2016 on
 covert articulation of /」/

(Twist et al. 2007:208; figure adapted from Delattre & Freeman 1968:41)

RQ2

What is the exact articulatory mechanism of s-retraction and how does this map onto the acoustic signal?

Two competing accounts:

/ **f** t ı i: t /

- **/s/** retracts far less in **/st/** clusters, e.g. *steep* (Shapiro 1995)
- coarticulatory bias towards retraction in other /sCJ/ clusters (Baker et al. 2011)
- alveolar realisations of /」/ rarely cooccur with retracted /s/ (Sollgan 2013)

- /t/ is always affricated when /s/ is retracted in /stJ (Lawrence 2000)
- Pre-/J/ affrication of /t/ is widespread in varieties of English (Cruttenden 2014:189-92)

/ **f t** i t /

 /t/ also affricates before /j/, e.g. [tʃʉːn], accounting for retraction in /stj/

RQ3

Which of the two competing accounts of the triggering mechanisms finds the most empirical support in BrE?

• Two parts to this investigation of Manchester English

Variation and change in the **speech community**

RQ4

What insight can we gain from a large-scale community-level study?

INDIVIDUAL VARIATION METHODOLOGY

STIMULI

• Various word-initial contexts embedded in a carrier sentence

Recording

٠

- Synchronised UTI (60fps) and audio recording (lavalier mic)
 - Mid-sagittal view
 - Stabilised with headcage
 - 5 repetitions per token (130 sentences in total)
 - Currently 8 speakers (3M; 5F) aged 18-26

- All born (or at least raised from age 4) in Greater Manchester
 - but in some cases parents aren't from Manchester (or even England)

ACOUSTIC DATA ANALYSIS

- For each fricative, we extract a "spectral slice" using a Praat script (DiCanio 2017):
 - Then calculate the centre of gravity (CoG) a single-point spectral mean, where higher values are more /s/-like, and lower values are more /ʃ/-like (Jongman et al. 2000)

• Tongue splines tracked and exported using AAA (Articulate Instruments Ltd. 2011)

(example clip of ultrasound footage from AAA)

(with palate trace, tongue tracking and fan lines)

STATISTICAL METHODS

• Ultrasound

- Modelled with GAMMs (generalised additive mixed models) using rticulate and tidymv packages (Coretta 2017, 2018)
- Ideal for modelling non-linear effects in dynamic (time/space) data (see Sóskuthy 2017 and references therein)

• Acoustics

 Mixed-effects linear regression for CoG measures with lme4 package (Bates et al. 2015)

INDIVIDUAL VARIATION ARTICULATION

Clear bimodality for tongue body: /ʃ/-/stɹ/-/stj/ v. /s/

Tongue body for **/stj/** largely overlapping with **/**

Though **/st**, more similar to **/s/** than **/ʃ/**

ARTICULATION

Almost complete overlap between all four contexts, even /s/ and /ʃ/ More differentiation at tongue tip (but confidence intervals also wider)

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of /s/ and /ʃ/ tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - Broadly speaking, more red = more differentiation in tongue shape

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of /s/ and /ʃ/ tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - Broadly speaking, more red = more differentiation in tongue shape
 - /s/ and /ʃ/ completely different for M01 and M02

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of /s/ and /ʃ/ tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - Broadly speaking, more red = more differentiation in tongue shape
 - /s/ and /ʃ/ largely distinct (but to a lesser extent) for F01 and M03

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of /s/ and /ʃ/ tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - Broadly speaking, more red = more differentiation in tongue shape
 - /s/ and /ʃ/ not at all different for F03 and F08 (also F06 and F07)

Some speakers exhibit clear tongue body retraction, such that there are two groups:

/s/ v. **/ʃ/-/st**_J/-/stj/

Others show a more intermediate pattern where the tongue body for /stu/ and /stj/ is somewhere between /s/ and /ʃ/

Finally, other speakers have no apparent lingual difference, even between <code>/s/</code> and <code>/ʃ/</code>

INDIVIDUAL VARIATION
ACOUSTICS

CENTRE OF GRAVITY

- All speakers still have an acoustic contrast between /s/ and /ʃ/
- Categoricity/gradience determined by Tukey contrasts for post-hoc pairwise significance tests in linear regression models (i.e. whether or not /sti/ and /stj/ are significantly different from /ʃ/)

COVERT ARTICULATION

- Even though some speakers show no apparent lingual difference, even between underlying /s/ and /ʃ/, the acoustic contrast is still maintained
- Rutter (2011) highlights the other phonetic parameters that could be involved in the /s/-/ʃ/ contrast:
 - **TONGUE BODY POSITION**
 - alveolar for /s/, post-alveolar for /ʃ/
 - **TONGUE SURFACE**
 - grooved for /s/, flat for /ʃ/
 - LIP SHAPE
 - strong labialisation for /ʃ/
 - Also TONGUE TIP
 - laminal v. apical constriction

COVERT ARTICULATION

- Even though some speakers show no apparent lingual difference, even between underlying /s/ and /ʃ/, the acoustic contrast is still maintained
- Rutter (2011) highlights the other phonetic parameters that could be involved in the /s/-/ʃ/ contrast:
 - **TONGUE BODY POSITION**
 - alveolar for /s/, post-alveolar for /ʃ/
 - **TONGUE SURFACE**
 - grooved for /s/, flat for /ʃ/
 - LIP SHAPE
 - strong labialisation for /ʃ/
 - Also TONGUE TIP
 - laminal v. apical constriction

'It is also worth noting that changes in one of the phonetic parameters discussed above may not necessarily co-occur with changes in the other two' (Rutter 2011:31)

COVERT ARTICULATION

- Even though some speakers show no apparent lingual difference, even between underlying /s/ and /ʃ/, the acoustic contrast is still maintained
- Rutter (2011) highlights the other phonetic parameters that could be involved in the /s/-/ʃ/ contrast:

- laminal v. apical constriction

• No one-to-one mapping between articulation (ultrasound) and acoustics (CoG)

	ultrasound		acoustics (CoG)
M01	categorical	\leftrightarrow	categorical
M02	categorical	\leftrightarrow	gradient
M03	gradient	\leftrightarrow	categorical
F01	gradient	\leftrightarrow	categorical
F03	none	\leftrightarrow	categorical
F06	none	\leftrightarrow	gradient
F07	none	\leftrightarrow	gradient
F08	none	\leftrightarrow	gradient
??	gradient	\leftrightarrow	gradient

• Regardless of this mapping, **/st**_J and **/st**_j/ pattern together

• And so there is likely a cause common to both

AFFRICATION

- All speakers exhibit comparable affrication of /t/ in both /stu/ and /stj/
- Phonetically similar to underlying /tʃ/ (just shorter in duration)
- Some evidence that speakers can affricate /t/ with only minimal s-retraction (e.g. F08)
 - But note that our speakers show no meaningful retraction of /s/ without also affricating /t/
 - e.g. *[∫tjʉːpɪd]

RETRACTION AT THE COMMUNITY-LEVEL

(joint work with Maciej Baranowski and Danielle Turton)

- Sociolinguistic interviews with 131 speakers born and raised in Greater Manchester
- **Birth years** spanning almost a century, from 1907 to 2001
- **Socioeconomic status** determined based on occupation (3 levels: working class, middle class, upper middle class)
- ~**85,000 tokens** of sibilants across all environments

- Hierarchy of retraction contexts as attested elsewhere (e.g. Baker et al. 2011)
- /」/ causes some lowlevel retraction even in the absence of affrication, e.g. /sp」/, /sk」/
- First quantitative evidence of retraction in /stj/ - e.g. student, stupid etc.

- Hierarchy of retraction contexts as attested elsewhere (e.g. Baker et al. 2011)
- /」/ causes some lowlevel retraction even in the absence of affrication, e.g. /sp』/, /sk』/
- First quantitative evidence of retraction in /stj/ - e.g. student, stupid etc.

/sp/ /sk/ /st/ spook school stoop

- Hierarchy of retraction contexts as attested elsewhere (e.g. Baker et al. 2011)
- /ı/ causes some lowlevel retraction even in the absence of affrication, e.g. /spı/, /skı/
- First quantitative evidence of retraction in /stj/ - e.g. student, stupid etc.

/stɪ/ /stj/ strewn student

- Hierarchy of retraction contexts as attested elsewhere (e.g. Baker et al. 2011)
- /ı/ causes some lowlevel retraction even in the absence of affrication, e.g. /spı/, /skı/
- First quantitative evidence of retraction in /stj/ - e.g. student, stupid etc.

|∫| shoe

- Hierarchy of retraction contexts as attested elsewhere (e.g. Baker et al. 2011)
- /ı/ causes some lowlevel retraction even in the absence of affrication, e.g. /spı/, /skı/
- First quantitative evidence of retraction in /stj/ - e.g. student, stupid etc.

 Hierarchical cluster analysis - objectively groups speakers based on distribution of CoG values across environments

Group #1 - no pattern of retraction

Group #2 - emerging pattern of retraction

Group #3 - /stı/ and /stj/ approaching /ʃ/

Average date of birth:

APPARENT TIME CHANGE

🗕 /s/ 🗕 /ʃ/ 🗕 /stj/ 🗕 /stu/

CONCLUSIONS

٠

- Evidence that the articulatory mechanisms behind the /s/-/ʃ/ contrast are more complicated than a simple retraction of the place of articulation
 - Calls into question the suitability of "retraction" as a label for this phenomenon:
 - s-hushing? (i.e. hissing /s/ > hushing /ʃ/)
 - The **/st**, and **/st**, contexts behave similarly in terms of acoustic s-retraction
 - Both at the level of the individual and the community
- This lends support to the idea that retraction is triggered locally by affrication and not by /J/ in a case of non-local assimilation
 - In turn, the explanation proposed by Baker et al. (2011) for the actuation of this change does not find support in BrE

NEXT STEPS

- **The next steps:** collect direct articulatory data on these other mechanisms
 - Electromagnetic articulography (EMA)
 - Coronal UTI
 - Electropalatography (EPG)
 - Video recording for lip-rounding
 - Also: dynamic articulatory (and acoustic!) analysis of /st / and /st / clusters
- Investigate word-internal retraction and the effect of morpheme boundaries, e.g. *posture, registry* etc.
- Investigate phrase-level retraction, e.g. pass treats, and the effect of prosodic boundaries and speech rate

NEXT STEPS

- Electromagnetic articulography
 - underway (as of yesterday!)

Thank you!

Thanks to **Stefano Coretta** for help with ultrasound; **Patrycja Strycharczuk** and **Ricardo Bermúdez-Otero** for their feedback; and **Jane Scanlon** for agreeing to be our first victim while we tried fitting the headcage; as well the audiences that have heard or seen previous iterations of this work, especially **BAAP**, **MFM** and **LAGB**.

- http://personalpages.manchester.ac.uk/staff/stephen.nichols/
 stephen.nichols@manchester.ac.uk
- http://www-users.york.ac.uk/~gb1055/
- 🦾 george.bailey@york.ac.uk
- 🥑 Əgrbails

REFERENCES

- Altendorf, Ulrike. 2003. Estuary English: Leveling at the interface of RP and South-Eastern British English. Tübingen: Gunter Narr.
- Articulate Instruments Ltd. 2011. Articulate Assistant Advanced. Version 2.17.02. URL: http://www.articulateinstruments.com/aaa/.
- Baker, Adam, Diana Archangeli & Jeff Mielke. 2011. Variability in American English sretraction suggests a solution to the actuation problem. *Language Variation and Change* 23(3). 347-74.
- Bang, Hye-Young, Morgan Sonderegger, Yoonjung Kang, Meghan Clayards & Tae-Jin Yoon. 2018. The emergence, progress, and impact of sound change in progress in Seoul Korean: Implications for mechanisms of tonogenesis. *Journal of Phonetics* 66. 120-44.
- Bass, Michael. 2009. Street or shtreet? Investigating (str-) palatalisation in Colchester English. *Estro: Essex Student Research Online* 1(1). 10-21.
- Bates, Douglas, Martin Mächler, Benjamin M. Bolker & Steven C. Walker. 2015. Fitting Linear Mixed-Effects Models Using **lme4**. *Journal of Statistical Software* 67(1). 1-48.
- Coretta, Stefano. 2017. rticulate: Ultrasound Tongue Imaging in R. R package version 1.3.1. URL: https://github.com/stefanocoretta/rticulate.
- Coretta, Stefano. 2018. tidymv: Tidy Model Visualisation. R package version 1.3.1. URL: https://github.com/stefanocoretta/tidymv.
- Cruttenden, Alan. 2014. Gimson's Pronunciation of English. Oxford: Routledge.
- Delattre, Pierre & Donald C. Freeman. 1968. A dialect study of American R's by X-ray motion picture. *Linguistics* 6(44). 29-68.
- DiCanio, Christian. 2017. Time averaging for fricatives. Praat script. Haskins Laboratories & SUNY Buffalo. URL: https://www.acsu.buffalo.edu/ ~cdicanio/scripts/Time_averaging_for_fricatives_2.0.praat.
- Durian, David. 2007. Getting [ʃ]tronger Every Day?: More on Urbanization and the Socio-geographic Diffusion of (str) in Columbus, OH. University of Pennsylvania Working Papers in Linguistics 13(2). 65-79.
- Gylfadottir, Duna. 2015. Shtreets of Philadelphia: An acoustic study of /str/retraction in a naturalistic speech corpus. University of Pennsylvania Working Papers in Linguistics 21(2). 89-97.
- Haley, Katarina L., Elizabeth Seelinger, Kerry Callahan Mandulak & David J. Zajac. 2010. Evaluating the spectral distinction between sibilant fricatives through a speaker-centered approach. *Journal of Phonetics* 38(4). 548-54.
- Janda, Richard D. & Brian D. Joseph. 2003. Reconsidering the Canons of Sound-Change: Towards a "Big Bang" Theory. In Barry Blake & Kate Burridge (eds.), Selected Papers from the 15th International Conference on Historical Linguistics, 205-19. Amsterdam: John Benjamins.

- Jongman, Allard, Ratree Wayland & Serena Wong. 2000. Acoustic characteristics of English fricatives. *Journal of the Acoustical Society of America* 108(3). 1252-63.
- Labov, William. 2001. Principles of Linguistic Change: Social Factors. Oxford: Blackwell.
- Lawrence, Wayne P. 2000. /str/ → /ʃtr/: Assimilation at a distance? American Speech 75. 82-7.
- Mielke, Jeff, Adam Baker & Diana Archangeli. 2010. Variability and homogeneity in American English /J/ allophony and /s/ retraction. In Barbara Kühnert (ed.), Variation, detail, and representation. *LabPhon* 10, 699-729. Berlin: Mouton de Gruyter.
- Mielke, Jeff, Adam Baker & Diana Archangeli. 2016. Individual-level contact limits phonological complexity: Evidence from bunched and retroflex /J/. Language 92(1). 101-40.
- Phillips, Betty S. 2001. Lexical diffusion, lexical frequency, and lexical analysis. In Joan L. Bybee & Paul Hopper (eds.), *Frequency and the Emergence of Linguistic Structure*, 123-36. Amsterdam: John Benjamins.
- Rutter, Ben. 2011. Acoustic analysis of a sound change in progress: The consonant cluster /stı/ in English. *Journal of the International Phonetic Association* 41(1). 27-40.
- Shapiro, Michael. 1995. A case of distant assimilation: /str/ → /ʃtr/. American Speech 70. 101-7.
- Sollgan, Laura. 2013. STR-palatalisation in Edinburgh accent: A sociophonetic study of a sound change in progress. MSc dissertation, University of Edinburgh.
- Sóskuthy, Márton. 2017. Generalised additive mixed models for dynamic analysis in linguistics: a practical introduction. ArXiv preprint: https://arxiv.org/abs/ 1703.05339.
- Stevens, Kenneth N. 2000. Acoustics Phonetics. Cambridge, MA: MIT Press.
- Stuart-Smith, Jane, Morgan Sonderegger, Rachel Macdonald, Jeff Mielke, Michael McAuliffe & Erik Thomas. 2019. Large-scale acoustic analysis of dialectal and social factors in English /s/-retraction. *ICPhS*, Melbourne, Australia, 5–9 August. URL: http://spade.glasgow. ac.uk/wp-content/uploads/2019/04/ sretraction_revised_final.pdf.
- Twist, Alina, Adam Baker, Jeff Mielke & Diana Archangeli. 2007. Are "covert" /J/ allophones really indistinguishable? University of Pennsylvania Working Papers in Linguistics 13(2). 207-16.
- Wilbanks, Eric. 2017. Social and structural constraints on a phonetically-motivated change in progress: (str) retraction in Raleigh, NC. University of Pennsylvania Working Papers in Linguistics 23(1). 301-10.

APPENDICES

DIFFERENCE SMOOTHS

4

4.5

5.0

5.5

55

• Electropalatography (EPG)

- Provides direct measures of lingual-palatal contact
- Mostly used for clinical purposes in speech and language therapy (see e.g. Dent et al. 1995, Timmins & Wood 2015, Wood et al. 2018)
- Can be used to investigate the size and shape of oral constrictions in fricatives as well as the width/ length of tongue grooving
- Electromagnetic articulography (EMA)
 - Can measure position and movement of various articulators (including lips)
 - Better than ultrasound, which is restricted to only one plane (see e.g. Strycharczuk et al. 2018 on lateralisation in /l/)

• Coronal ultrasound

Provides direct access to the sides of the tongue, and so could be used to investigate grooving

Dent, Hilary, Fiona Gibbon & Bill Hardcastle. 1995. The application of electropalatography (EPG) to the remediation of speech disorders in schoolaged children and young adults. *International Journal of Language and Communication Disorders* 30(2): 264-77.

Strycharczuk, Patrycja, Donald Derrick & Jason Shaw. 2018. The L-ephant in the room: Lateralisation in vocalised /l/. Paper presented at the 26th Manchester Phonology Meeting, 24-26 May 2018.

Timmins, Claire & Sarah Wood. 2015. Spatial and temporal variability of sibilants in children with Down's syndrome. In the Scottish Consortium for ICPhS 2015 (ed.), *Proceedings of the 18th International Congress of Phonetic Sciences*. Glasgow, UK: University of Glasgow. Paper 763.

Wood, Sarah, Claire Timmins, Jennifer Wishart, William Hardcastle & Joanne Cleland. 2018. Use of electropalatography in the treatment of speech disorders in children with Down syndrome: A randomised controlled trial. To appear in *Journal of Language and Communication Disorders*.

F3-F2 and centre of gravity

F3-F2 can be used as a proxy for lip rounding (Stevens 2000:291)

•

- For some speakers, there is a clear relationship between CoG and lip rounding
 - More /ʃ/-like tokens exhibit lower CoG and more lip rounding
 - More **/s/**-like tokens show higher CoG but less lip rounding
- However, many speakers show no such pattern, with much higher within-category variation
- Perhaps because lip rounding isn't being used as a primary cue in sibilant production? (cf. Bang et al. 2018 on Seoul Korean)

F3-F2 AND CENTRE OF GRAVITY

F3-F2 can be used as a proxy for lip rounding (Stevens 2000:291)

•

- For some speakers, there is a clear relationship between CoG and lip rounding
 - More /ʃ/-like tokens exhibit lower CoG and more lip rounding
 - More /s/-like tokens show higher CoG but less lip rounding
- However, many speakers show no such pattern, with much higher within-category variation
- Perhaps because lip rounding isn't being used as a primary cue in sibilant production? (cf. Bang et al. 2018 on Seoul Korean)

F3-F2 and centre of gravity

F3-F2 can be used as a proxy for lip rounding (Stevens 2000:291)

٠

- For some speakers, there is a clear relationship between CoG and lip rounding
 - More /ʃ/-like tokens exhibit lower CoG and more lip rounding
 - More /s/-like tokens show higher CoG but less lip rounding
- However, many speakers show no such pattern, with much higher within-category variation
- Perhaps because lip rounding isn't being used as a primary cue in sibilant production? (cf. Bang et al. 2018 on Seoul Korean)

AFFRICATION

٠

•

Based on CoG, for most speakers, the fricated portions of pre-/』/ affrication and coalescence of /tj/ are identical both to each other and to underlying /tʃ/

But **some** speakers do differentiate the affricated **/t/** depending on whether it is followed by **/j/** or **/**_J**/** (see F07, M01, M02)

